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Liver Stem Cells and Molecular Signaling Pathways in
Hepatocellular Carcinoma
Krit Kitisin, Michael J. Pishvaian, Lynt B. Johnson, Lopa Mishra

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most lethal cancers.
Surgical intervention is the only curative option, with only a small
fraction of patients being eligible. Conventional chemotherapy and
radiotherapy have not been effective in treating this disease, thus
leaving patients with an extremely poor prognosis. In viral, alcoholic,
and other chronic hepatitis, it has been shown that there is an activation
of the progenitor/stem cell population, which has been found to reside in
the canals of Hering. In fact, the degree of inflammation and the disease
stage have been correlated with the degree of activation. Dysregulation
of key regulatory signaling pathways such as transforming growth
factor-beta/transforming growth factor-beta receptor (TGF-β/TBR),
insulin-like growth factor/IGF-1 receptor (IGF/IGF-1R), hepatocyte growth
factor (HGF/MET), Wnt/β-catenin/FZD, and transforming growth factor-
α/epidermal growth factor receptor (TGF-α/EGFR) in this progenitor/stem
cell population could give rise to HCC. Further understanding of these
key signaling pathways and the molecular and genetic alterations
associated with HCC could provide major advances in new therapeutic
and diagnostic modalities.
Gastrointest Cancer Res 1(suppl 2): S13–S21. ©2007 by International Society of Gastrointestinal
Oncology.
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Hepatocellular carcinoma (HCC) is the
fifth most common solid malignancy

worldwide and causes more than 600,000
deaths annually.1 Current data indicate that
the incidence of HCC is steadily increasing
in the United States.2,3 Prognosis remains
extremely poor with a 5-year survival rate
of less than 5% without treatment.3 Cur-
rently, the only curative therapeutic option
for early-stage HCC is surgical intervention,
including percutaneous ablation, hepatic
resection, and liver transplantation. How-
ever, only 12% of diagnosed HCC patients
are deemed eligible for curative therapy.4,5

Accumulating evidence suggests that
development of HCC is a multistep process
associated with changes in host gene
expression, altered DNA methylation, and
point mutations or loss of heterozygosity
(LOH) in selected cellular genes.6 The
dynamics of these cellular changes remain
unclear, and it is still a challenge to identify
the rate-limiting steps in initiation and pro-
gression of HCC. However, a number of
molecular changes occur in high frequen-
cy in pre-neoplastic tissues, such as cir-

rhotic tissue, hepatic adenomas and dys-
plastic nodules. For example, chronic hep-
atitis B virus (HBV) infection, which is one
of the most prominent risk factors for
hepatocarcinogenesis, appears to disrupt
senescence-related pathways by different
mechanisms. These include inactivation of
p53, p55sen and hyperphosphorylation of
the retinoblastoma protein (pRb), as well as
down-regulation of sui1 (a translational
factor) and the cyclin-dependent kinase
inhibitor, p21WAF1/CIP1/SDI1.7–9 Perturbation of
several signaling pathways such as wing-
less (Wnt/β-catenin/FZD), JAK/STAT, MAPK,
insulin-like growth factor 2 (IGF-2), and
transforming growth factor-beta (TGF-β)
have also been identified.10 Approximately
40% of HCCs display chromosomal abnor-
malities.11–14 In addition, microsatellite
instability (MSI) and dysfunction of the
mismatch repair genes, hMSH2 and
hMLH1, are present in up to 11% of
HCCs.15,16 These are in turn associated with
mutations in TGFβRII, M6P/IGFIIR, and
BAX genes.17 Among proto-oncogenes,
c-myc is upregulated in approximately

50% of HCCs,18,19 and cyclin D1 is overex-
pressed in approximately 40% of HCCs.20,21

Dysregulation of these positive mediators of
cellular proliferation promotes autonomous
and unregulated cellular growth in HCC.

STEM CELLS AND HEPATOCAR-
CINOGENESIS
Both epigenetic and genomic alterations
that accumulate in prolonged chronic in-
flammatory states, such as in cirrhosis and
chronic hepatitis, compromise an intricate
balance of various regulatory pathways,
resulting in accelerated proliferation of
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hepatocytes and development of mono-
clonal hepatocyte populations. These pop-
ulations harbor dysplastic hepatocytes that
will eventually evolve to dysplastic nodules,
which are true pre-neoplastic lesions, 30%
of which will develop into HCCs within 5
years.22 Though these dysplastic lesions de-
rive from monoclonal cell populations, dif-
ferent lesions from the same liver possess
different combinations of genomic aberra-
tions. This heterogeneity in genomic changes
supports the view that diverse combinations
of cellular alterations can sufficiently trans-
form normal hepatocytes into malignant ones.

In continuously renewing systems such
as gastrointestinal, hematopoietic, and epi-
dermal tissues, it is widely accepted that
stem cells are the only cells with the poten-
tial to acquire sufficient genetic alterations
for malignant transformation because of
their long lifespan as compared to short-
lived differentiated cells. However, the liver
has several cell types that have the longevity
to acquire the requisite number of genetic
changes for neoplastic development.
Hepatocytes, cholangiocytes, and progenitor/
stem cells are normally relatively dormant,
but they possess enormous proliferative
capacity under certain stimuli. In rodents,
the liver can be restored to its original vol-
ume within 10 days even after a two-thirds
partial hepatectomy.23,24 Transplantation of
normal mature wild-type hepatocytes into
transgenic mice with urokinase plasmino-
gen activator, in which the transgenic
hepatocytes undergo massive necrosis,
results in 12 or more cell divisions and
most of the transgenic liver is replaced.25

Serial transplantation experiments also
have shown a near infinite proliferative
capacity of hepatocytes.26 It has also been
shown that when there is massive bile duct
injury, hepatocytes can differentiate into
cholangiocytes.27 Thus, mature hepato-
cytes have stem cell properties. However,
in prolonged chronic inflammatory dis-
eases, such as viral hepatitis and cirrhosis,
hepatocytes actually undergo replicative
senescence because of telomerase short-
ening.26 Another cell population, a progen-
itor/stem cell, is activated under these
circumstances and it is thus possible that
progenitor/stem cells could be at least
partly responsible for HCCs.

In general, stem cells are undifferenti-
ated cells with the ability to undergo asym-

metric cell division producing two different
daughter cells: a stem cell and a committed
progenitor cell. In the adult gastrointestinal
system, stem cells generally considered to
be tissue-specific are able to give rise only
to progeny cells corresponding to their tis-
sue of origin. During liver development, the
liver bud is seen around embryonic day
(ED) 8.5 as endodermal stem cells begin to
proliferate and differentiate under the
influence of fibroblast growth factor signal-
ing from the cardiogenic mesoderm28 and
bone morphogenetic protein signaling from
the septum transversum mesenchyme.29

This region then produces cells destined to
become hepatoblasts, bipotential cells
committed to fetal hepatocytes, and biliary
epithelial cells. Hepatoblasts begin ex-
pressing alpha-fetoprotein (AFP) and albu-
min (Alb) and later express cytokeratins
(CKs) 7 and 19. Just before ED16, hepato-
blasts diverge along two cell lineages:
hepatocytes (AFP+/Alb+) and cholangio-
cytes (CK19+).30,31 In adult human tissues,
these hepatic progenitor cells (or mouse
oval cells) are immature epithelial cells
found residing in the smallest terminal
branches of the biliary tree called the
canals of Hering.32 This compartment is
also known as the progenitor cell compart-
ment in humans and oval cell compart-
ment in rodents.33 In this compartment, the
immature epithelial cells, which express
both bile ductular and hepatocyte markers
(CK19 and AFP), are in direct physical

continuity with hepatocytes at one mem-
brane boundary and bile duct cells at
another boundary and are considered to
represent hepatic stem cells.34,35

The progenitor cell compartment (oval
cell compartment in rodents) can be acti-
vated when the mature hepatocytic or chol-
angiocytic compartments are damaged or
their replication is inhibited.32,36 Such circum-
stances can be observed in cirrhosis and
chronic inflammatory liver diseases when
hepatocytes undergo senescence owing to
telomere shortening after 20 to 30 years of
continuous replication.26 Activation of the
progenitor cell compartment, also known
as “ductular reaction” (“oval cell reaction”
in rodents), is merely an expansion of tran-
sit amplifying progenitor cells, which can
differentiate into hepatocytes and biliary
cells. Intermediate hepatocytes, which
have an intermediate phenotype between
progenitor cells/biliary ductular cells and
mature hepatocytes, are seen in moderate-
to-severe inflammatory hepatitis. In fact,
the degree of progenitor cell activation and
the number of these intermediate hepato-
cytes correlate with the degree of inflam-
mation and fibrosis in diseases like chron-
ic hepatitis, hemochromatosis, and non-
alcoholic steatohepatitis.37,38 It has been
demonstrated that sequestered hepato-
cytes in cirrhosis are in continuity with
reactive ductules.39

Several studies have shown a progeni-
tor cell phenotype in a substantial number
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Figure 1. Schematic representation of fetal liver development and hepatocarcinogenesis process based on
stem cell model. About half of the small cell dysplasic lesions consist of progenitor cells and intermediate cells.
Abbreviations: AFP = alpha-fetoprotein; Alb = albumin; HCC = hepatocellular carcinoma.



of HCCs. Detailed immunophenotyping of
HCCs revealed that 28% to 50% of HCCs
express markers of progenitor/biliary cells
such as CK7 and CK19.40–43 These tumors
also consist of cells that have an interme-
diate phenotype between progenitors and
mature hepatocytes. In fact, HCCs with
CK19 expression have a significantly worse
prognosis and higher recurrence after sur-
gical resection and liver transplantation
than CK19-negative HCCs.40 Nevertheless,
the question remains whether this imma-
ture intermediate phenotype represents
progenitor cell differentiation arrest or
dedifferentiation of mature hepatocytes.
The histologic and immunophenotyping
studies favor the progenitor cell differentia-
tion arrest model. Small dysplastic foci
(less than 1 mm in size) represent the ear-
liest premalignant lesions, and 55% of
them are comprised of progenitor cells and
intermediate hepatocytes, instead of
senescent hepatocytes.26 A recent study
also identified a side population of cells
(SP), which have characteristics of both
hepatocytic and cholangiocytic lineages, in
human HCC cell lines, Huh7 and PLC/PRF/5.
Importantly, injection of SP cells into non-
obese diabetic/severe combined immun-
odeficiency (NOD/SCID) mice leads to
tumor formation. Tumor-initiating potential
is maintained in these SP cells after serial
transplantations.44 These results suggest that

hepatic progenitor/stem cells could account
for human hepatocarcinogenesis (Figure 1).

MOLECULAR SIGNALING
PATHWAYS AND HEPATO-
CARCINOGENESIS
Normal embryogenesis and organ develop-
ment as well as tissue regeneration and
repair require an intricate balance of vari-
ous molecular growth factor signals.
Dysregulation of these signaling pathways
and their components is the central princi-
ple in human tumorigenesis. Recent stud-
ies have identified regulatory pathways
including TGF-β/TBR, IGF/IGF-1R, HGF/MET,
Wnt/β-catenin/FZD, and TGF-α/EGFR as
key contributory factors to the transforma-
tion, proliferation, antiapoptosis, and invasive
behaviors of human HCCs.

Transforming Growth Factor-Beta
Signaling
Initially described for its transforming
capability, TGF-β plays an important role in
a wide range of cellular responses, includ-
ing cellular homeostatsis, cell differentia-
tion, proliferation, migration, and apopto-
sis. The TGF-β superfamily comprises
more than 30 members, including the
TGF-βs, bone morphogenetic proteins,
activins, and nodal. The basic signaling
cascade of TGF-β involves type I and type
II transmembrane serine/threonine kinase

receptors (TBRI and TBRII). Cellular
responses are mediated by the intracellu-
lar signaling proteins, Smads.45 Vertebrates
possess at least nine Smad proteins cate-
gorized into three functional classes: (1)
receptor activated Smads (R-Smads):
Smad1, Smad2, Smad3, Smad5, and
Smad8; (2) co-mediator Smads: Smad4
and Smad10; and (3) inhibitory Smads:
Smad6 and Smad7.46 Activation of Smads
by TGF-β results in association of R-Smads
with Smad4. This Smad complex then
translocates to the nucleus where it partic-
ipates in regulation of TGF-β target gene
expression such as p15, p21, and E-cad-
herin by interacting with various transcrip-
tional factors such as CBP/p300 and
SKI/SNO47,48 (Figure 2).

Recent studies show that adaptor pro-
teins such as embryonic liver fodrin protein
(ELF), the Smad anchor for receptor acti-
vation (SARA), filamin, and microtubules
play critical roles in modulating TGF-β
signaling. Genetic studies have highlighted
that ELF, a major dynamic scaffolding pro-
tein, is required for Smad3 and Smad4
co-localization.49-51 Disruption of ELF
results in mislocalization of Smad3 and
Smad4 leading to loss of the TGF-β–
dependent transcriptional response.49,52,53

Interestingly, we have also demonstrated in
previous work that ELF is crucial for multi-
ple developmental processes. ELF-/-

mutant mice share strikingly similar phe-
notypes with double heterozygous Smad2/
Smad3 mutants, including profound defects
in gut, liver, and cardiovascular and ner-
vous systems.54-58 Livers from these mutants
display distorted liver architecture and
scant early intrahepatic bile duct develop-
ment.49 Interestingly, by 15 months of age,
40% of heterozygous ELF mice sponta-
neously developed HCC and also showed
additional phenotypic changes such as
increased centrilobular steatosis and high-
grade dysplasia. A marked attenuation of
the TGF-β –mediated antiproliferative
response has also been shown in several
human HCC cell lines.53 Functional inacti-
vation of TGF-β signaling via expression of
a dominant-negative mutant TBRII in
transgenic mice treated with the carcino-
gen diethylnitrosamine resulted in higher
rates of pre-neoplastic lesions and HCCs
as compared with similarly treated wild-
type mice.6 In addition, MSI or inactivation

Figure 2. Transforming growth factor-beta (TGF-β) signals through distinct receptors and Smads, which are
modulated by β-spectrin embryonic liver fodrin protein (ELF). TGF-β binds to serine/threonine kinase receptor
complexes I and II (TBRI and TBRII), which subsequently phosphorylates receptor-associated Smad proteins,
such as Smad2 and Smad3. Smad2/3 then forms heterometric complex with Smad4 and ELF proteins and
translocates to the nucleus, interacting with transcriptional factor and activating target genes. Abbreviation:
SBE = Smad binding element.

TßRII TßRI

Smad2/3

ELF
P

P

TßRII TßRI

Smad4

PP

PP

P

Transcriptional factor

Target gene
expression

TGFß

P

SBE

Stem Cells and Molecular Pathways in HCC

S15July/August 2007 www.myGCRonline.org



of the mismatch repair genes, hMSH2 and
hMLH1, is present in up to 11% of
HCCs.15,16 and is in turn associated with
mutations in TGFβRII, M6P/IGFIIR, and
BAX genes.17 Most studies document a
reduction of TGF-β receptors in up to 70%
of HCCs.59 However, Smad proteins shown
to be impaired in other cancers appear to
play a minor role in HCCs. Smad4, which
is mutated in 50% of pancreatic cancers,
is also mutated in 10% of HCCs. Similarly,
Smad2 mutations are identified in fewer
than 5% of HCCs.60,61 Finally, inhibitory
Smad7 is upregulated in 60% of advanced
HCCs.62

Yet, TGF-β levels in serum and urine
are increased in HCC patients.63,64 In addi-
tion, up to 40% of HCCs have increased
TGF-β based on immunohistochemical
studies.65,66 High TGF-β expression levels
have been correlated with advanced clinical
stages of HCC.67 The dual role of TGF-β
signaling in HCCs may be explained by its
effect on the tumor tissue microenviron-
ment and on selective loss of the TGF-β–
induced antiproliferative pathway. Tumor-
derived TGF-β could contribute to tumor
growth indirectly by suppressing immune
surveillance or stimulating production of
angiogenic factors. Tumor cells that have
selectively lost their growth-inhibitory
responsiveness to TGF-β but retain an
otherwise functional TGF-β signaling path-
way may exhibit enhanced migration and
invasive behavior in response to TGF-β
stimulation.68,69 TGF-β signaling also has
been shown to induce an epithelial to mes-
enchymal transition (EMT) in these cells.69

This EMT process is characterized by
decreased cell-cell adhesion, through the
decrease in E-cadherin, leading to en-
hanced migration and invasiveness.

Wingless/β-Catenin Signaling
The Wnt signaling pathway is highly con-
served evolutionarily. It plays an important
role in cell proliferation, cell/cell interac-
tions, motility, tissue development and
modeling, as well as axis formation.70,71

Initiation of Wnt signaling involves the
binding of Wnt proteins to a receptor com-
plex consisting of the frizzled receptor fam-
ily (Fz) and a member of the low-density
lipid receptor family, Lrp5 or Lrp6. The key
intracellular component is cytoplasmic β-
catenin protein.72,73 Under normal circum-

Figure 3. In the absence of Wnt stimulation, the APC (adenomatous polyposis coli) forms a trimeric complex,
known as the "destruction complex," with glycogen synthase kinase-3β (GSK) and Axin. This complex then
interacts with β-catenin and degrades by the ubiquitin-proteasome pathway. When Wnt ligands bind to the
seven-transmembrane receptor, the cytoplasmic protein Dishevelled (Dsh) is recruited to the membrane and
binds to Axin1 and Axin2. The mechanism of Dsh-mediated inhibition of Axin is not well understood, but it has
been suggested that Dsh might disrupt the destruction complex. Inhibition of Axin results in accumulation of
β-catenin, which subsequently translocates into the nucleus. β-catenin interacts with LEF/TCF (lymphocyte
enhancer factor/T cell factor) proteins and serves as a coactivator of LEF/TCFs to stimulate transcription of Wnt
target gene. Grouch protein (Gro) acts as corepressor of LEF/TCFs and normally binds to LEF/TCFs in the
absence of β-catenin. New therapeutic treatments aimed at this pathway include monoclonal antibodies,
cyclooxygenase (COX)-2 inhibitors, and several small molecules.
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Figure 4. Simplified schematic diagram of insulin-like growth factor (IGF) signaling. IGF-I and IGF-II bind to
IGF receptor (IGFR), a receptor tyrosine kinase (RTK), with high affinity resulting in phosphorylation of intra-
cellular proteins including insulin receptor substrate (IRS). The signal is then conveyed to specific downstream
effectors such as phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT/PKB), and mitogen-activated
protein kinase (MAPK) pathways. These pathways play crucial roles in antiapoptosis as well as cell prolifera-
tion. Bioavailability of both IGFs is influenced by the presence of IGF binding proteins (IGFBP). New therapeu-
tic agents such as AG1024 and gefitinib aim to block this signaling pathway at level of the receptor.
Downstream targeting agents such as rapamycin, CCI-779, and RAD001 are also under investigation.
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stances, when the Wnt signaling pathway
is inactive, the tumor suppressor APC forms
a trimeric complex, known as the “destruc-
tion complex,” with glycogen synthase
kinase-3β (GSK3β) and axin/conductin.
This complex interacts with and serine
phosphorylates β-catenin, thus targeting it
for degradation by the ubiquitin-protea-
some pathway. In addition to this canonical
degradation, β-catenin can be degraded
without phosphorylation through a path-
way involving a p53-inducible E3-ubiquitin
ligase, seven in absentia homolog (SIAH).74

When Wnt ligand is present, it binds to Fz
and Lrp5 or Lrp6. Ligand binding results in
accumulation of cytoplasmic β-catenin by
recruiting the cytoplasmic protein Dishevelled
(Dsh), which disrupts the destruction com-
plex. β-catenin then interacts with a mem-
ber of the TCF/LEF (T-cell fac-
tor/lymphocyte enhancer factor) family of
DNA-binding proteins, resulting in activa-
tion of Wnt target genes to increase cell
proliferation.75,76 Wnt/β-catenin target
genes include cell-cycle promoting genes
such as c-MYC and cyclin D1, the anti-
apoptotic gene survivin, and pro-invasive
genes such as MMP.59 Therefore, a muta-
tion in Wnt signaling pathway components
results in the accumulation of β-catenin,
and predisposes tissues to tumorigenesis
(Figure 3).

Alterations in Wnt signaling compo-
nents have been described in HCCs. Up to
40% of HCCs exhibit accumulation of
nuclear β-catenin. Several mechanisms
contribute to β-catenin accumulation in
HCC, such as downregulation of the Dsh-
inhibitor, dapper homolog 1 (HDPR1), and
upregulation of PIN1 (a prolyl cis/trans iso-
merase), a β-catenin/APC destabilizer.77-79

Axin-2 has been found to be mutationally
inactivated in 3% to 14% of HCCs.80,81 In
addition, the Fz-7 receptor is frequently over-
expressed.82 Taken together, these results
suggest that more than one portion of the
Wnt signaling pathway has to be dysregu-
lated in liver tumors to achieve aberrant β-
catenin nuclear accumulation.

Insulin-Like Growth Factor
Signaling
IGF signaling plays a central role in embryo-
genesis, lifespan regulation, and cell prolif-
eration. IGF signaling consists of IGF ligands
(IGF-I and IGF-II), IGF binding proteins

(IGFBP 1-6), and membrane-bound IGF
receptors (IGF-1R, IGF-II/M6PR, and IGF-
2R). IGF ligands can also bind to the
insulin receptor. IGF signaling is initiated
by the binding of IGF ligands, which results
in phosphorylation of intracellular target
proteins. These proteins then convey the
signal to specific downstream effectors
such as INSR-substrate IR5 leading to
activation of, for example, phosphatidyli-
nositol 3-kinase (PI3K) and protein kinase
B (AKT/PKB). Binding of growth factor
receptor-bound protein 2 (Grb2) to the
receptor can lead to activation of mitogen-
activated protein kinase family (MAPK) sig-
naling. The result is transcriptional activa-
tion of various target genes such as p27,
c-myc, c-FOS, cyclin B and vascular
endothelial growth factor (VEGF)83 (Figure 4).

Dysregulation of IGF signaling in HCC
occurs predominantly at the level of IGF-II
bioavailbility. Overall, increased levels of
IGF-II are found in 16% to 40% of HCCs.59

In chronic viral hepatitis B, HBV-derived
HBx protein contributes to overexpression
of IGF-II through SP1-mediated reactiva-
tion of fetal-type IGF-II.84,85 In chronic hep-
atitis C, the HCV-derived core gene prod-
uct also induces overexpression of IGF-II
by acting as a transactivator through SP1
and EGR-1 binding sites.86 IGF-II bioavail-
ability is inversely dependent on IGF-2R
expression level. A reduced IGF-2R level is
associated with less ligand-receptor bind-
ing and thus a relative increase in local

IGF-II bioavailability. In fact, IGF-2R level is
reduced in 63% of HCCs87 and loss of het-
erozygosity at the IGF-2R locus has been
implicated in HCCs and in pre-neoplastic
lesions.88,89 Similarly, reduced expression of
IGFBP also results in a relative increase in
IGF-II concentration.

Hepatocyte Growth Factor/MET
Signaling
HGF is one of the most potent growth fac-
tors for hepatocytes and plays crucial roles
in proliferation, migration, cell survival,
morphogenesis, angiogenesis, and tissue
regeneration.90 HGF binds the tyrosine kinase
receptor, c-MET, which is expressed in epi-
thelial and endothelial cells. Binding of HGF
to the c-MET receptor results in receptor
autophosphorylation as well as phosphory-
lation of adaptor proteins such as Gab-1
and Grb2. The HGF signaling is then con-
veyed to activation of various downstream
effectors such as phospholipase C (PLC),
Stats, PI3K, and extracellular signaling-
regulated kinase (ERK1/2).91 Specificity of
HGF signaling is achieved through differ-
ent membranous binding partners and the
adaptor proteins. Examples of HGF target
genes are MMP and urokinase-type plas-
minogen activator (uPA) (Figure 5).

HCC has been shown to release tumor
cell products inducing stellate cells and myo-
fibroblasts to secrete HGF. The increased HGF
from these cells in turn promotes tumor cell
invasiveness.92–94 Furthermore, c-MET is also

Figure 5. Simplified schematic of hepatocyte growth factor (HGF)/MET signaling pathway. Activation of phos-
phorylation of the kinase domain in cMET, a receptor tyrosine kinase (RTK), by HGF results in activation of
adaptor proteins: growth factor receptor-bound protein2 (Grb2) and Grb2-associated binding protein (Grb2
and Gab1). Activation of these adaptor proteins leads to activation of various downstream effectors resulting in
transcription of various genes important in mitogenesis, angiogenesis, and morphogenesis.
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overexpressed in HCC as compared with
normal liver. c-MET is overexpressed in 20%
to 48% of HCCs. The increase in c-MET could
be partly due to genomic alterations such
as 7q gains or to growth factor-dependent
transcriptional activation of c-MET.95–97

However, increased c-MET levels do not
appear to correlate with tumor size or inva-
siveness.96

Transforming Growth Factor-
α/Epidermal Growth Factor
Signaling
TGF-α/EGF signaling comprises at least
eight ligands including TGF-α, EGF,
heparin-binding EGF, amphiregulin, beta-
cellulin, epiregulin, epigen, and crypto.
TGF-α/EGF signaling conveys its signal
through the receptor tyrosine kinase fami-
ly: EGFR (Her1/ErbB-1), neu/Her2/ErbB-2,
Her3/ErbB-3, and Her4/ErbB-4. Different
ligand specificities and concentrations lead
to differential phosphorylation of multiple
tyrosine residues at the cytoplasmic por-
tion of the molecule.98 Phosphorylation of
the receptor’s cytoplasmic portion serves
as a docking site for recruitment of pro-
teins with Src homology 2 domains, such
as Grb2 and Shc.99 The signal will then
activate multiple downstream pathways,
which can directly or indirectly interact
with each other (Figure 6).

TGF-α and EGF act as potent mitogens
for hepatocytes and stimulate DNA synthe-
sis.100 TGF-α has been shown to be overex-
pressed in human HCCs as well as in HCC
cell lines.101 TGF-α appears to act during
the early stages of hepatocarcinogenesis
and its level is correlated with tumor differ-
entiation and proliferation.102,103 The pro-
TGF-α/EGF signaling level is increased
from normal liver to preneoplastic lesions
and to HCCs. Interestingly, TGF-α levels in
HCCs correlate with the presence of viral
polypeptides (HBS and HBC) in the adja-
cent non-cancerous liver tissue; and in
HCC cells, HBV-DNA induces TGF-α expres-
sion.104 Heparin-binding EGF, which can be
used as a prognostic marker for disease-
free survival, is also markedly increased in
59% to 100% of HCCs as compared with
surrounding normal tissue by immunohis-
tochemical staining.105

NEW THERAPEUTIC TARGETS
The only curative options for earlier stages
of HCC are surgical resection, transplanta-
tion, or percutaneous ablation. However,
only 12% of patients are eligible for surgi-
cal intervention because most HCCs are
diagnosed at a late stage and the majority
develop in diseased livers with poor hepatic
functional reserve. Numerous experimental
strategies are aimed at the aforementioned

growth factor molecular pathways. A major
signaling pathway in HCC is TGF-β, and
serine/threonine kinase inhibitors (RSTK)
have been developed. SB-431542, a small
RSTK, has been shown to block TGF-β–
and activin-mediated signaling. Reduced
phosphorylation and decreased nuclear
translocation of the Smads are observed
with this inhibitor. More important, TGF-β–
evoked protumorigenic cellular effects are
diminished.106 SD-208 RSTK has also been
shown to inhibit TGF-β–mediated migra-
tion and invasion in tumor cell models.
However, viability and proliferation are not
decreased with this compound.107

Therapeutic options targeting Wnt sig-
naling are limited; however, receptor tyro-
sine kinase inhibitors (RTK) have also been
shown to reduce receptor signaling. The
crucial consideration is to create a highly
selective inhibitor that will not interfere with
other receptor tyrosine kinases such as
INSR, which can lead to diabetogenic
effects. Highly selective inhibitors such as
tyrphostins, NVP-AEW541, and cyclolig-
nans are able to reduce activation of IGF-1R
and downstream AKT/PKB. In vitro and in
vivo studies have shown a reduction in tumor
cell growth especially in combination with
chemotherapeutic agents.108,109 Novel neu-
tralizing antibodies against IGF-1R such as
IR3 which has been shown to reduce
receptor autophosphorylation and signal-
ing are also under active investigation.110–112

Antisense RNA and antisense oligode-
oxynucleotide techniques to block IGF-1R
synthesis are another approach to increase
apoptosis and reduce proliferation.113

Inhibitors of the c-MET receptor such
as PHA-665752, SU11271, SU11274,
and SU11606 have been shown to reduce
c-MET phosphorylation, resulting in subse-
quent inactivation of downstream effectors
such as AKT/PKB, Gab-1, PLC, and Stat3.
By blocking the c-MET receptor, decreases
in proliferation, cell motility, and invasion of
different types of tumor cells have been
achieved. In a tumor xenograft mouse
model, PHA-665752 caused a reduction
in tumor volume and intensive cell death.114

Treatment of HCC with SU5416, an RTK
inhibitor, was also shown to reduce activa-
tion of ERK1/2 and AKT/PKB effectors.
The Ras/VEGF-R inhibitor BAY 43-9006
(sorafenib) reduced proliferation and
angiogenesis in a promising phase II clini-

Figure 6. Simplified schematic diagram of transforming growth factor-alpha/epidermal growth factor receptor
signaling pathway (TGF-α/EGFR). TGF-α binding to EGFR results in stimulation of the endogenous receptor
tyrosine kinase (RTK). The activated membrane-bound EGFR serves as a docking site for recruitment of pro-
teins such as Src homology 2 domain containing (Shc) and growth factor receptor-bound protein2 (Grb2). The
signal then activates one of several intracellular signal transduction pathways including protein kinase A (PKA),
mitogen-activated protein kinase (MAPK), Jak/Stat, and C-src pathways, which play important roles in cell pro-
liferation. New therapeutic agents such as erlotinib, cetuximab, and lapatinib aim to block this signaling cascade.
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cal trial. Treatment of HCC patients with
BAY 43-9006 resulted in stable disease or
tumor shrinkage in 43% of cases.59

CONCLUSIONS
Emerging studies regarding the role of
hepatic progenitor/stem cells are only now
being described. By far, the major underly-
ing etiology of HCCs is chronic inflammatory
diseases from viral hepatitis or cirrhosis.
Under these circumstances, the progenitor
cell compartment is activated as the
mature hepatocytes become senescent.
Substantial numbers of HCCs display an
intermediate phenotype of progenitor and
hepatocyte cells. Current studies favor the
differentiation arrest model, in which the
maturation process of the progenitor/stem
cell is disrupted. Many growth factor sig-
naling pathways play crucial roles in the
maturation of liver cells such as TGF-β/
TBR, IGF/IGF-1R, HGF/MET, Wnt/β-
catenin/FZD, and TGF-α/EGFR signaling.
Dysregulation of these pathways repre-
sents a crucial role in hepatocarcinogenesis.
Further studies are necessary to elucidate
cross-talk between the different regulatory
pathways. The understanding of these inter-
dependent regulatory pathways holds pro-
mise for the development of new therapeu-
tic approaches to this devastating disease.
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